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7.1  Introduction 
 

 

Two examples are presented to demonstrate how the FE method can be used to analyse stress 

analysis problems. The first example concerns stress concentration in a thin sheet of metal, while 

the second example highlights the use of beam elements to simulate a cantilever beam deflection. 

The examples demonstrate the effects of mesh refinement and the choice of elements on the 

accuracy of the FE solutions.  
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7.2  Perforated Plate Example (Continuum Elements) 
 

 

Problem Definition 

 

Consider a square plate of side length L and thickness t (in the z-direction) with a central circular 

hole of diameter D, subjected to a uniaxial stress σo, as shown in Figure 7.1. The numerical 

values used are L = 100 mm,  D = 20 mm, t = 5 mm and σo = 100 MPa. The objective of the 

analysis is to determine the stress concentration around the hole. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: Perforated plate example 

 

Geometry 

 

Since the plate thickness (in the z-direction) is small, 2D plane stress conditions are applicable. 

The plate (both geometry and loads) is symmetrical about the horizontal and vertical axes. 

Therefore, only a symmetrical quarter-model needs to be modelled as shown in Figure 7.2.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: Symmetrical quarter of the perforated plate 
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Material Properties 

 

Assuming an elastic analysis, the material properties needed are Young’s modulus (E) and 

Poisson’s ratio (). The values used here are E = 200 GPa and  = 0.3. If the load is high enough 

to cause local plasticity around the hole, the elastoplastic stress-strain curve, or at least the yield 

stress (yield) must also be specified. 

 

 

Displacement Boundary Conditions 

 

On the axes of horizontal and vertical symmetry, the nodes can only slide along the symmetry 

lines, i.e. displacements perpendicular to the axes of symmetry are prevented. Therefore, in this 

problem, there are two sets of displacement boundary conditions, as follows: 

 (a)  Zero y-displacements (roller conditions) specified on line AB.  

 (b)  Zero x-displacements (roller conditions) specified on line DE.  

 

Applied Loads 

 

A uniform tensile stress (distributed load), σo , is specified at the top surface (line CD). 

 

 

FE Model 

 

2D plane stress linear (4-node) or quadratic (8-node) elements can be used here. Either 

quadrilaterals or triangles, or a combination of the two, can be used.  Quadratic elements are 

suitable for this problem, since they can represent the circular hole geometry better than linear 

elements. Since stress concentration is expected around the hole, mesh biasing should be 

specified around the hole.  

 

The analytical solution for the stress in the direction of the applied load in a perforated infinite 

plate is given by: 
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where x is the distance from the centre of the hole and R is the radius of the hole. Note that since 

the plate used in this problem is not infinite, the computed stresses will be expected to be slightly 

higher than those predicted by the analytical solution.  

 

To demonstrate the effect of mesh refinement on the accuracy of the FE solutions, a number of 

meshes are used, ranging from 2 to 32 elements, as shown in Figure 7.3. Also, two types of 

elements are used; 4-node linear elements and 8-node quadratic elements. 
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Figure 7.3:  FE meshes used for the perforated plate example 

 

Figures 7.4 and 7.5 show comparisons of the FE and analytical solutions for various mesh 

densities for the 4-node elements and 8-node elements, respectively. It can be seen that the FE 

solutions converge to the analytical solution as the mesh density is increased and that the 

quadratic 8-node elements provide better accuracy than the corresponding linear 4-node elements.  

 

The deformed shape for the 32 quadratic element mesh is shown in Figure 7.6 where the 

deformations are exaggerated by multiplying them by a factor greater than 1. The deformed shape 

is useful in checking that the overall deformation of the body has followed the prescribed 

boundary conditions, i.e. the left and bottom sides slide along the axes of symmetry.  

 

The stress contour plot for the vertical stress is shown in Figure 7.7, where, as expected, the 

highest stresses occur in the vicinity of the hole. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4: Comparison of FE and analytical solutions for the perforated plate example (4-

node elements) 
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Figure 7.5: Comparison of FE and analytical solutions for the perforated plate example (8-

node elements) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6: Exaggerated deformed shape (solid lines) for the perforated plate example 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.7: Stress contour plot (yy) for the perforated plate example 
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7.3  Cantilever Beam Example (Beam Elements) 

 

Problem Definition 

 

Consider a cantilever beam of length L built in at one end and subjected to a concentrated force F 

at the other end, as shown in Figure 7.8. The beam has a square cross-sectional area of side length 

t. The numerical values used are : L = 2 m , t = 0.1 m and F = 1 kN. The objective of the analysis 

is to obtain the overall deflection of the beam.  

 

 

 

 

 

 

 

 

 

Figure 7.8: Cantilever beam example 

Geometry 

 

Since there is no symmetry in this problem, the whole geometry has to be modelled. The 

geometry can be modelled with beam elements since the geometry and loads satisfy beam 

bending conditions, i.e. the geometry is long, slender and subjected to only transverse loads.  

However, it is also possible to model this problem with 2D plane stress elements since the 

thickness in the z-direction is sufficiently small. 

 

 

Material Properties 

 

Assuming an elastic analysis, the material properties needed are only Young’s modulus (E) and 

Poisson’s ratio (). The values used here are E = 200 GPa and  = 0.3. 

 

 

Boundary Conditions 

 

The cantilever is built-in at the left hand side. If beam elements are used, then both the 

displacements (ux and uy) and the rotation (, gradient of the displacement) at the built-in node 

must be prescribed as zero, as shown in Figure 7.9. If the rotation (slope) at the built-in end  is 

not specified, then point A becomes pin-jointed which is incorrect when modelling a built-in end. 

 

If 2D plane stress continuum elements are used, then all nodes on line AD must have zero 

displacements in the x and y directions, which automatically enforce the built-in condition. Note 

that rotation is not a variable in 2D continuum elements. 
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Figure 7.9: Cantilever FE models using beam and 2D continuum elements 

 

 

Applied  Loads 

 

A point load of magnitude F is applied to point C. If a 2D plane stress model is used, this point 

force can either be applied at point C, or distributed along the line BC. 

 

FE Model 

 

As discussed above, two types of elements can be used to model this problem; beam elements or 

2D plane stress elements. Of course, it is always possible to model this problem using 3D 

elements, but that would be unnecessary and would consume more computation time without 

improving the accuracy. Figure 7.10 shows a 3-node beam element mesh and an alternative 8-

node 2D plane stress element mesh with 2x2 integration points.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.10: FE meshes used for the cantilever beam problem 

 

The analytical solution for the vertical displacement, v,  in a cantilever beam can be derived from 

beam bending theory as follows: 
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Figure 7.11 shows a comparison of the FE and analytical solutions for a number of beam and 2D 

plane stress meshes, where it is clear that the FE solutions are in good agreement with the 

analytical solutions, even when a relatively small number of elements are used. The  deformed 
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shapes for the cantilever are shown in Figure 7.12.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.11: Comparison of FE and analytical solutions for the cantilever beam problem 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.12: Deformed shapes (solid lines) for the cantilever beam problem 
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